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Abstract 10	
  

Precipitation, soil moisture, and air temperature are the most commonly used climate 11	
  

variables to monitor drought, however other climatic factors such as solar radiation, wind speed, 12	
  

and specific humidity can be important drivers in the depletion of soil moisture and evolution 13	
  

and persistence of drought. This work provides an assessment of the Evaporative Demand 14	
  

Drought Index (EDDI) at multiple time scales for several hydroclimates as a companion study to 15	
  

Hobbins et al. (2015) by examining EDDI and individual evaporative demand components as 16	
  

they relate to the dynamic evolution of flash drought over the central US, characterization of 17	
  

hydrologic drought over the western US, and comparison to commonly used drought metrics of 18	
  

the US Drought Monitor, Standardized Precipitation Index (SPI), Standardized Soil Moisture 19	
  

Index (SSI), and the Evaporative Stress Index (ESI). Results show that EDDI has the strongest 20	
  

relationships to SPI and SSI over Texas, Oklahoma, and much of the desert Southwest, while 21	
  

comparisons to summer ESI revealed a hotspot over much of the central US. At short time 22	
  

scales, spatial distributions and time series results illustrate that EDDI is useful for flash drought 23	
  

identification, and can serve as a leading indicator by as much as two months in advance of the 24	
  

USDM, SPI, and SSI. Our results illustrate the benefits of physically based evaporative demand 25	
  

estimates, and demonstrate EDDI’s utility and effectiveness in an easy-to-implement operational 26	
  

early warning and long-term hydrologic drought monitoring tool for agricultural and drought 27	
  

monitoring, and potential application to seasonal forecasting and fire-weather monitoring. 28	
  

1. Introduction 29	
  

Drought is a complex and naturally occurring process with adverse effects on society, 30	
  

primarily through degradation and loss of agricultural crops and depletion of water resources 31	
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(i.e., streamflow and reservoir storage). Recent examples are instructive: in California, the 32	
  

extended drought that began in late 2011 is still ongoing, and the 2011-2014 three-year average 33	
  

precipitation (Prcp) record indicates that this period is the second driest in recorded history 34	
  

(Seager et al., 2015); in 2011, Texas experienced extreme Prcp deficits; while in 2011 and 2012 35	
  

record-breaking temperatures (Tair) and high wind speed (Uz) played a significant role in drought 36	
  

intensification over much of the central US (Karl et al. 2012, Cattiaux and Yiou 2013). Total 37	
  

economic losses are estimated to be $2.7 billion, $7.7 billion, and more than $35 billion for the 38	
  

California, Texas, and central US droughts, respectively. While conditions in Texas deteriorated 39	
  

over many months in 2011, the depletion of moisture over the central US in 2011 occurred at a 40	
  

much faster rate. This fast onset of drought has recently been termed “flash drought” (Svoboda et 41	
  

al. 2002). The physical mechanisms driving flash droughts have been largely neglected from 42	
  

traditional drought metrics. Hence there is a growing need for continued development of 43	
  

physically based drought metrics that capture important land surface-atmospheric feedbacks, and 44	
  

provide sufficient early warning. 45	
  

It has been common practice in recent decades to monitor and analyze drought using metrics 46	
  

driven by Prcp and Tair only. The two most commonly used drought indices are the Palmer 47	
  

Drought Severity Index [PDSI; Palmer (1965)], which relies on monthly Tair and Prcp, and the 48	
  

Standardized Precipitation Index [SPI; McKee (1993)], which relies on Prcp only. While the 49	
  

PDSI and SPI have proven useful for providing valuable information regarding hydrologic and 50	
  

meteorological drought, these metrics have limitations at short time scales and fail to account for 51	
  

the effects of other important drought meteorological and radiative forcings such as specific 52	
  

humidity (q), Uz, and downwelling shortwave radiation (Rd). The most heavily used dataset for 53	
  

decision making with regards to drought is the US Drought Monitor [USDM; Svoboda et al. 54	
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(2002)], which relies on a blend of metrics (including PDSI and SPI) and climate data (e.g., soil 55	
  

moisture (SM), streamflow, and snow water equivalent) to produce weekly maps of drought 56	
  

severity. The USDM could be improved through the inclusion of important hydrometeorological 57	
  

forcings key to identifying flash and long-term drought through the use of physically based 58	
  

evaporative demand (E0) estimates. 59	
  

Other operational products could similarly be improved with the inclusion of physically 60	
  

based E0 estimates. For example, the U.S. operational PDSI, produced by the National Oceanic 61	
  

and Atmospheric Administration (Heddinghaus and Sabol 1991), continues to use Tair-based E0 62	
  

estimates (i.e. Thornthwaite 1948) within the PDSI formulation despite the fact that there have 63	
  

been a number of studies that recommend the use of physically based formulations of E0 (Milly 64	
  

and Dunne 2011; Hobbins et al. 2008, 2012; Hobbins 2015). Both Dai (2011) and van der 65	
  

Schrier et al. (2011) found PDSI to be largely insensitive to E0 parameterization during the 20th 66	
  

and early 21st century. On the other hand, Sheffield et al. (2012) found major differences 67	
  

between the PDSI driven with Tair- and physically-based E0 estimates, especially from the mid-68	
  

1990s through 2008, with Tair-based E0 estimates showing a significant drying trend in PDSI, and 69	
  

physically based E0 estimates indicating no significant trend in global drought severity. The role 70	
  

of physically based E0 estimates in drought monitoring and prediction remains an active—and to 71	
  

some degree, controversial—area of research, and is a focus of this paper. 72	
  

Recent studies have shown that actual evapotranspiration (ET), which is obtained through the 73	
  

use of thermal and optical satellite remote sensing or land surface models, used in combination 74	
  

with physically based E0 can be used as a drought indicator by inherently accounting for 75	
  

feedbacks between the land surface-atmosphere interface through the use of ratios of ET to E0 76	
  

(Yao et al. 2010; Anderson et al. 2007a, 2007b, 2011; Mu et al. 2013; Otkin et al. 2013a, 2013b). 77	
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However, the use of thermal and optical remote sensing data for operational drought monitoring 78	
  

has limitations, such as cloud cover, spurious ET estimates in semi-arid and arid regions, satellite 79	
  

inter-arrival times that have to be interpolated, and uncertain simulated surface energy balance in 80	
  

mountainous regions, especially where seasonal snowpack exists. 81	
  

In an effort to complement and overcome some of the limitations of the aforementioned 82	
  

metrics, the companion paper (Hobbins et al. – this issue) developed the Evaporative Demand 83	
  

Drought Index (EDDI), which relies solely on physically based E0 estimates derived from a near-84	
  

real-time (2-5 day latency), easily accessible land surface forcing dataset: the North American 85	
  

Land Data Assimilation System Phase-2 [NLDAS-2; Mitchell et al. (2004)]. Hobbins et al. (this 86	
  

issue) describe two primary physical feedbacks between ET and E0 that form the rationale for 87	
  

EDDI: a complementary relationship under water-limited conditions (extended drought) where 88	
  

ET and E0 vary in opposing directions (Bouchet 1963), and parallel variations under energy-89	
  

limited conditions at the onset of flash drought. Under both scenarios, EDDI was found to 90	
  

respond to drying and wetting anomalies of major components of the hydrologic cycle at various 91	
  

time scales (Hobbins et al. - this issue). 92	
  

This paper builds upon the work of Hobbins et al. (this issue) through a robust CONUS-wide 93	
  

assessment of EDDI against several commonly used drought indices, and outlines a second 94	
  

standardization option that acts to reduce errors in comparing multiple drought indices through 95	
  

space and time. Data sources, E0 formulation, and statistical procedures to calculate EDDI are 96	
  

presented first, followed by comparisons of EDDI to other commonly used drought metrics, a 97	
  

flash drought case study over the central US, and finally, extended drought case studies over the 98	
  

western US. 99	
  

2. Data and Methods 100	
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2.1. Evaporative demand 101	
  

Daily bias-corrected and spatially disaggregated (from 12 km to 4 km) NLDAS-2 gridded 102	
  

meteorological data [METDATA; Abatzoglou (2011)] are used to compute E0 on a daily basis 103	
  

for 1979 to 2013. Maximum and minimum temperature at 2-m (Tmax and Tmin), q at 2-m, Rd, and 104	
  

10-m wind speed (U10) were obtained from the University of Idaho 105	
  

(http://metdata.northwestknowledge.net/). A variety of methods has been developed to compute 106	
  

E0 including Tair-based methods (e.g., Thornthwaite 1948, Hargreaves and Samani 1985), 107	
  

radiation-based methods (Priestley and Taylor 1972), and radiation - aerodynamic combination 108	
  

methods that incorporate Tmax, Tmin, Rd, U10, and q, such as the Penman-Monteith (PM) approach 109	
  

(Monteith 1965). A priori, it is generally assumed that if the necessary data resources are 110	
  

available, a full-form physically based method, such as PM, should be used over methods based 111	
  

only on Tair or radiation. Hobbins et al. (2012) and Hobbins (2015) demonstrated that the 112	
  

primary drivers of E0 variability differ across the US, and with aggregation period (e.g., monthly 113	
  

vs. annual) and season. For example, during summer months U10 is the primary driver of E0 114	
  

variability over much of the Great Basin, while Rd is the primary driver of variability over much 115	
  

of the southeast US. In this study, we use reference ET (ET0) from the PM-based American 116	
  

Society of Civil Engineers Standardized Reference ET equation (ASCE-EWRI, 2005) for E0. 117	
  

2.2 Evaporative Demand Drought Index 118	
  

A probability-based standardized climate variable can be obtained using parametric or non-119	
  

parametric methods. Parametric methods use a single probability distribution to fit a time series 120	
  

(e.g., Gamma distribution for SPI), where probabilities are transformed to standardized values 121	
  

through an inverse normal approximation. However, a single probability distribution may not 122	
  

always be appropriate at large spatial scales, and several studies have documented these 123	
  



 7 

limitations with SPI (Guttman 1999; Quiring 2009) and Standardized Streamflow Index 124	
  

(Vicente-Serrano et al. 2012). The Evaporative Demand Drought Index (EDDI) presented in 125	
  

Hobbins et al. (this issue) is calculated from a simple Z-score based on the mean and standard 126	
  

deviation of a given accumulated ET0 time series. Here, we deviate from Hobbins et al. (this 127	
  

issue) by using a probability-based approach for EDDI to allow for more consistent comparisons 128	
  

between EDDI against other standardized indices. 129	
  

To overcome the limitations of a parametric approach, ET0 probabilities (P(x)) are obtained 130	
  

through the empirical Tukey plotting position (Wilkes 2011): 131	
  

𝑃 𝑥! =
𝑖 − 0.33
𝑛 + 0.33  , 

where i is the rank in the historical time series (from 1 to 35, with 1 being the max ET0 value and 132	
  

35 being the min) of the observed value, and n is the number of observations. EDDI values are 133	
  

obtained from empirically derived probabilities through an inverse normal approximation 134	
  

(Abramowitz and Stegun 1965) at time scales of 1, 3, 6, 9, and 12 months. Comparisons between 135	
  

EDDI values derived from the simple z-score outlined in Hobbins et al. (this issue) and the 136	
  

formulation presented here showed negligible differences in identifying wet and dry periods, but 137	
  

the plotting position approach was ultimately chosen in this paper to maintain consistency when 138	
  

comparing multiple indices outlined below. This method follows Hao and AghaKouchak (2014), 139	
  

where the plotting position approach was used to compute SPI, Standardized Soil Moisture Index 140	
  

(SSI) and Multivariate Standardized Drought Index (MSDI). Farahmand and AghaKouchak 141	
  

(2015) recommend this plotting position approach to maintain consistency when comparing 142	
  

several standardized drought indices. 143	
  

2.3 NLDAS-based drought metrics 144	
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To assess the ability of EDDI to identify historical drought periods, EDDI is compared to SPI 145	
  

and SSI using monthly Prcp and simulated SM from NLDAS-2 (Xia et al. 2012a, 2012b). 146	
  

NLDAS-2 Prcp is primarily derived from Climate Prediction Center gridded daily gauge data 147	
  

{with a topographical adjustment from the Parameter-elevation Regressions on Independent 148	
  

Slopes Model [PRISM; Daly et al. (1994)]}. NLDAS-2 SM is derived from the Variable 149	
  

Infiltration Capacity land surface model [VIC; Liang et al. (1994)], and represents the average 150	
  

SM from the top 100 cm of the soil column. Monthly NLDAS-2 data were obtained for the 151	
  

period of 1979 to 2013 with a native grid spacing of 0.125°. To compare EDDI to NLDAS-2 152	
  

drought indices, all NLDAS-2 data were resampled to the 4-km (~1/16°) UI METDATA grid 153	
  

using a bilinear interpolation. Monthly Prcp and SM were accumulated at five time scales (1, 3, 154	
  

6, 9, and 12 months), and standardized following the EDDI methodology of plotting positions 155	
  

and inverse normal approximation. Pearson linear correlation coefficients between EDDI and 156	
  

standardized NLDAS-2 variables were computed for each month (n = 35 years) at the five time 157	
  

scales. 158	
  

2.4 Evaporative Stress Index 159	
  

The ESI (Anderson et al. 2007b, 2011) represents standardized anomalies in the ET fraction 160	
  

of reference ET (i.e., ET/ET0), with ET obtained through satellite-assisted modeling of the land 161	
  

surface energy balance. ET and other land-surface energy balance components are retrieved 162	
  

using satellite optical and thermal imagery, to force the Atmosphere-Land Exchange Inverse 163	
  

surface energy balance model [ALEXI; Anderson et al. (1997, 2007a)]. Atmospheric variables 164	
  

needed to drive ALEXI come from the North American Regional Reanalysis [NARR; Mesinger 165	
  

et al. (2006)]. 166	
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Weekly ESI data were provided (courtesy of Martha Anderson, USDA, and Chris Hain, 167	
  

University of Maryland) over the US for 2000 to 2013 at a 4-km spatial resolution and were 168	
  

aggregated to time scales of 1, 2, and 3 months. To obtain a constant comparison between EDDI 169	
  

and ESI, EDDI was recalculated using the same period of record as the ESI, and the same 170	
  

aggregation time scales. ESI data were resampled using a bilinear interpolation to match the 171	
  

EDDI grid. No downscaling was necessary as both grids were of identical spatial resolution. 172	
  

Pearson linear correlation coefficients between EDDI and ESI were computed for each week 173	
  

over the 14-year period and at all five time scales. 174	
  

2.5 United States Drought Monitor 175	
  

The USDM (Svoboda et al. 2002) was used as another metric to validate EDDI, with the 176	
  

primary goal of identifying differences between the two metrics during the evolution of drought 177	
  

through time and space. The USDM is derived from a blend of drought metrics adjusted using 178	
  

local expert knowledge to develop weekly drought severity maps over CONUS (Svoboda et al. 179	
  

2002; Anderson et al. 2013). The USDM classification system of drought ranges from D0 180	
  

(abnormally dry) to D4 (exceptional drought). For results where the USDM is compared, all 181	
  

drought metrics were converted to USDM classes (Table 1). The comparisons of EDDI to the 182	
  

USDM are necessarily qualitative because the USDM is a blend of information at several 183	
  

different time scales, whereas EDDI represents a single time scale. 184	
  

< Table 1 here > 185	
  

USDM data (2000 to 2013) were downloaded as ESRI shapefiles provided by the National 186	
  

Drought Mitigation Center, and rasterized to match the 4-km EDDI grid, to create a USDM class 187	
  

map of integer values of drought intensity ranging from 0 to 4 (i.e., D0 = 0, D1 = 1, D2 = 2, D3 188	
  

= 3, and D4 = 4); 189	
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3. Results and Discussion 190	
  

3.1 NLDAS-2 drought index correlations with EDDI 191	
  

Correlations between EDDI and NLDAS-2 drought indices (EDDI-SPI and EDDI-SSI) for 1, 192	
  

6, and 12 month time scales are shown in Figure 1. Positive EDDI values indicate drought, and 193	
  

negative SPI and SSI values indicate drought, therefore strong negative correlations represent 194	
  

similar drought signals between EDDI and both SPI and SSI over the 35-year period of record. 195	
  

At the 1-to 12-month time scales correlations between EDDI and SPI and SSI are strongest 196	
  

(more negative) over much of the southwestern and southcentral US (with the exception of 1-197	
  

month SSI), and highest in Texas (r <-0.7). The northeast is region of general weak correlations 198	
  

for both EDDI-SPI and EDDI-SSI, with the Midwestern states of OH, IN, and MI being a weak 199	
  

spot for EDDI-SPI only. Spatial correlations at 6 and 12 month time scales are quite similar 200	
  

(Figure 1c-1f), and generally much stronger than at the 1-month time scale (Figure 1a and 1b). 201	
  

Over the northeastern US, EDDI-SPI correlations remain fairly weak at longer timescales, while 202	
  

EDDI-SSI correlations improve over OH, WV, NY, and PA (Figure 1c-1f). 203	
  

Weak correlations to 1-month SSI over the west may be explained by above average Tair and 204	
  

Rd (driving EDDI upwards) that can lead to increased snow melt and SM, and a short term 205	
  

wetting signal from SSI, particularly during the winter months. Positive correlations of EDDI-206	
  

SPI and EDDI-SSI over the northeastern US are caused by energy-limited conditions as opposed 207	
  

to water-limited conditions. In such energy-limited regions, the rate of change in ET is generally 208	
  

proportional and in the same direction as ET0 (Han et al. 2014; Hobbins et al. - this issue). 209	
  

< Figure 1 here > 210	
  

Figure 2 highlights four regions of interest selected for individual monthly correlation 211	
  

analysis. The Central Valley of California (CA) and Iowa (IA) are two major agricultural regions 212	
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where drought impacts can have adverse effects on crop production. East-central Texas (TX) is 213	
  

part of a region that has been identified as a global “hot spot” for strong land surface-214	
  

atmospheric coupling (Koster et al. 2004, 2006); therefore strong correlation of SM and Prcp to 215	
  

EDDI is expected. Pennsylvania (PA) is an area identified by Koster et al. (2009) where SM is 216	
  

generally high and exerts little control on ET due to prevailing energy limiting conditions, even 217	
  

during times of severe meteorological drought. This observation is consistent with low 218	
  

correlations found in Figure 1 in parts of the northeast US. The following section further 219	
  

highlights how ET0 anomalies (i.e., EDDI) in PA relate to SM- and Prcp-driven droughts. 220	
  

< Figure 2 here > 221	
  

Individual monthly correlations between EDDI and NLDAS-2 derived indices at various 222	
  

time scales are shown in Figure 3 for these regions of interest. For each of the selected regions 223	
  

shown in Figure 2, EDDI correlations to SSI and SPI were area-averaged over all pixels. For the 224	
  

TX region (Figure 3a and 3e), seasonality and time scale had little impact on the strength of 225	
  

correlations, and generally showed strong inverse relationships (r < -0.6 for SPI and r < -0.7 for 226	
  

SSI) during most months and time scales, reinforcing the conclusions of Koster et al. (2004, 227	
  

2006). 228	
  

For the CA region, large seasonal and time scale dependent variations were found, especially 229	
  

at the 1-month time scale for both SPI and SSI (Figure 3b and 3f). Correlations ranged from 230	
  

+0.20 to -0.82, with the highest correlations occurring at the 6- to 12-month time scales during 231	
  

the growing season. An exceptionally weak correlation (-0.13) was found with SPI during July at 232	
  

the 1-month time scale. July is the driest month of the year for the Central Valley of CA, and 233	
  

most Julys see zero Prcp accumulation. This limits the negative range of the 1-month SPI 234	
  

(McEvoy et al. 2012) causing poor correlations with EDDI. Furthermore, when it does rain 235	
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during dry summer months it occurs from isolated convective activity over a single day: even if 236	
  

most of the month was warm, cloud-free, and dry (leading to a drought signal from EDDI), the 237	
  

SPI will show a wet anomaly. A more consistent stepped correlation pattern was revealed at 238	
  

longer time scales, where r values < -0.7 were found during the spring (April, May, and June) for 239	
  

3-month, spring and summer (July, August, and September) for 6-month, and summer and fall 240	
  

(October, November, and December) for 9- and 12-month periods. 241	
  

Iowa was similar to Texas in that little variability was found in correlations (r-values only 242	
  

ranged from -0.5 to -0.7), with the exception of the 1-month time scale. Lower correlations at 1-243	
  

month time scale during the fall and winter should be expected with SSI, since the top 100 cm of 244	
  

ground is typically frozen during these months, and land surface-atmospheric coupling is weak. 245	
  

There is a rapid increase in correlation at the 1-month time scale during the late spring and 246	
  

summer. 247	
  

Correlations for PA region were the weakest of the four analyzed, with notably higher 248	
  

correlation to SSI (Figure 3h) when compared to SPI (Figure 3d). For SPI (Figure 3d), r-values 249	
  

never exceed -0.56, while for SSI (Figure 3h) r-values ranged from -0.60 to -0.69 during the 250	
  

summer and early fall at 1-, 3- and 6-month time scales. Weak correlations were found to be both 251	
  

slightly positive and negative (-0.30 < r < +0.20) for SPI and SSI at the 1-month time scale 252	
  

during fall and winter, and for winter and spring months at other time scales. Results shown in 253	
  

Figure 3 illustrate that EDDI may be particularly useful for flash drought and seasonal drought 254	
  

monitoring, especially during the growing season. 255	
  

< Figure 3 here > 256	
  

Soil moisture is typically a slowly varying component of the hydro-climatic system 257	
  

compared to variations in ET0; therefore EDDI could serve as a leading indicator for identifying 258	
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soil moisture deficits. Correlations between EDDI and SSI at coincident time scale and ending 259	
  

month (as presented in Figure 3) may not be the most robust due to this time lag between SM 260	
  

and ET0. To demonstrate the potential value of EDDI as a leading drought indicator during the 261	
  

growing season a lagged correlation analysis was performed between 3-month SSI ending in 262	
  

August and EDDI at every time scale and ending month. 263	
  

Figure 4 shows that in all four regions EDDI leads SSI, where 3-month SSI ending in August 264	
  

(blue dots in Figure 4 show fixed time scale and ending month for SSI) is better correlated to 3-265	
  

month EDDI ending in June (CA; Figure 4a) or July (TX, IA, and PA; Figure 4b, 4c, and 4d 266	
  

respectively). An interesting feature of Figure 4 is shown for IA, where 12-month EDDI ending 267	
  

in August was found to have highest correlation to 3-month SSI ending in August, highlighting 268	
  

the extremely low summer SM moisture variability in this region. This is further reinforced later 269	
  

in Figure 6, where monthly SSI variability was found to be low relative to EDDI and SPI during 270	
  

the 2012 drought. These results highlight that EDDI is a leading indicator when compared to 271	
  

SSI, and therefore could be used to complement and perhaps improve the USDM since SM 272	
  

percentiles are primary inputs for USDM objective blends. 273	
  

< Figure 4 here > 274	
  

3.2 ESI correlations with EDDI 275	
  

Seasonal temporal correlations between EDDI and ESI for CONUS are shown in Figure 5. 276	
  

Only spring (April, May, and June) and summer (July, August, and September) periods are 277	
  

evaluated due to limited availability of continuous monthly ESI data during fall and winter. ESI 278	
  

data were frequently missing in snow-covered mountainous regions of the west during spring 279	
  

and summer periods, and ESI pixels were masked (indicated by white shading in Figure 5, as in 280	
  

the mountain ranges of western US) when less than 75% of the monthly time series was available 281	
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over the period of 2000 to 2013. Pixels with spurious ESI data (ESI <-5 and >5) were also 282	
  

masked. One benefit of EDDI over ESI and other remote sensing based metrics is that EDDI can 283	
  

be used during all seasons. This may be particularly useful for high-elevation 284	
  

hydrometeorological monitoring in seasonally snow-covered areas. 285	
  

Figure 5 illustrates fairly large differences between spring and summer periods, with 286	
  

negligible differences between different time scales of 4-, 8-, and 12-weeks. During the spring 287	
  

period negative correlations are strongest (r values < -0.7) over much of TX, the desert SW, and 288	
  

central valley of CA, while weaker relationships were found over the NE, and parts of the Pacific 289	
  

NW (Figure 5a, 5c, and 5e). The low positive correlations in the NE are due to energy-limited 290	
  

evaporative conditions described in section 3.1. Summer correlations (Figure 5b, 5d, and 5f) are 291	
  

strongest and spatial patterns most consistent over the central US, and lower correlations are 292	
  

evident over parts of NV, CA and into the Pacific Northwest when compared to the spring 293	
  

period. Inspection of the summer time series from the regions of low correlation in the west and 294	
  

Pacific Northwest showed that during certain summers ESI and EDDI were strongly negatively 295	
  

correlated, but positively correlated in others (not shown). ET rates in semi-arid regions are 296	
  

typically low during summer periods; therefore small variations in ET can potentially lead to 297	
  

large changes in ESI, making for poor correlations with EDDI. For example, most of NV 298	
  

experienced below normal Prcp and high temperatures for July of 2005, and EDDI and SPI 299	
  

indicated drought conditions, whereas ESI indicated wet conditions (not shown). In general, 300	
  

EDDI is strongly correlated to ESI (r values < -0.7) during spring and summer months over 301	
  

much of the southwest, southcentral, and northcentral US. 302	
  

< Figure 5 here > 303	
  

3.3 Flash drought over the central US 304	
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Flash drought can develop even during periods of excess Prcp, and evaporative drivers can 305	
  

potentially uniquely identify the onset and evolution of flash drought. For example, in some 306	
  

situations (i.e., the 2011 central CONUS case), a T-based E0 would fail to identify rapid drying 307	
  

due to below normal Tair coincident with high U2 and low q. The following highlights the 308	
  

Midwest droughts of 2011 and 2012 as a case study to demonstrate how EDDI can serve as an 309	
  

effective early warning of flash droughts, as well as extended droughts. 310	
  

Area-averaged time series of 1-month EDDI are compared to 1-month SPI and SSI during 311	
  

2011 and 2012 in Figure 6a for the IA domain. Figure 6b illustrates the sensitivity of EDDI to 312	
  

individual ET0 forcings averaged over the IA domain. Note that in Figures 6a and 6b the vertical 313	
  

axis of EDDI is reversed to better visualize drought onset and duration when compared to SPI 314	
  

and SSI. Figure 6a illustrates that in April, 2011, all indices are near neutral (i.e., close to zero), 315	
  

and over the next two months EDDI changes to a moderate drought class (<-0.78 or USDM D1 316	
  

class), while both SPI and SSI increase to slightly wet conditions. SPI and SSI values do not 317	
  

decrease towards moderate drought conditions until July of 2011. SPI falls below moderate 318	
  

drought in September, and SSI follows one month later in October. Both EDDI and SSI maintain 319	
  

extended drought conditions throughout all of 2012, with the exception of February when EDDI 320	
  

is slightly above moderate drought (-0.78), but still below zero. During this extended drought of 321	
  

2012, SPI is highly variable and indicates wet conditions for many months. 322	
  

To highlight the ET0 drivers that caused EDDI to signal first a flash drought and then an 323	
  

extended drought, a simple sensitivity analysis of EDDI was performed (Figure 6b and 6c). For 324	
  

this analysis, ET0 was calculated while constraining the variable of interest to daily climatology 325	
  

values in order to isolate the impact of each forcing on the EDDI drought signal. Results are 326	
  

presented as estimates of EDDI with a notation of the variable constrained to its daily 327	
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climatology (i.e., EDDI-T, EDDI-q, EDDI-Rd, and EDDI-U2). For example, EDDI-T was 328	
  

calculated using the daily climatology of Tmax and Tmin, and with METDATA-observed forcings 329	
  

values of all other variables. During the period of 20 May to 25 May, EDDI-q and EDDI-U2 had 330	
  

the greatest separation from standard EDDI values in the negative direction (note y-axis is 331	
  

reversed), which indicates that the drying power of the air term in the ET0 equation, (U2 332	
  

multiplied by vapor pressure deficit), initiated the flash drought signal—approximately 20 May 333	
  

through 5 June—in EDDI via increased U2 and below normal q (Figure 6c). In this case, using 334	
  

daily climatology q and U2 values mitigated the drought signal relative to the standard EDDI. By 335	
  

June, 2011, EDDI decreased below the moderate drought threshold (-0.78), with the primary 336	
  

difference from May being that U2 and Tair were then acting in combination to exacerbate the 337	
  

drought signal—as opposed to Tair moderating it in May. Despite below-normal Tair conditions in 338	
  

September, 2011, the standard EDDI drought signal was maintained due to extremely low q 339	
  

values evidenced by a large difference between EDDI and EDDI-q (absolute difference of 1.17). 340	
  

From November, 2011, through the following May, Tair dominated the EDDI signal, as seen by 341	
  

the large differences between EDDI and EDDI-T. This increase in Tair and ET0 likely contributed 342	
  

to the persistent SSI drought signal throughout 2012, despite above-normal Prcp for February, 343	
  

April, October, and December (Figure 6a). 344	
  

Results illustrated in Figure 6 and in the companion paper of Hobbins et al. (2015) highlight 345	
  

two major focal points of this research: (1) EDDI is a leading indicator of flash and extended 346	
  

drought conditions, and (2) a physically based E0 is required to capture this signal. This 347	
  

reinforces the work of Hobbins et al. (2012) and Hobbins (2015) who concluded that Tair is not 348	
  

always the dominant driver of ET0, and T-based parameterizations could lead to false drying (or 349	
  

wetting) signals when used for drought monitoring applications. Our findings illustrated in 350	
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Figure 6 also contradict the notion that 2012 should be considered a flash drought case over the 351	
  

central US (e.g. Mo and Lettenmaier 2015): our results clearly indicate a well-established and 352	
  

persistent drought signal by both EDDI and SSI, with SPI being the only indicator to signal a 353	
  

rapid transition from wet to dry over the period of April through July. Figure 6 illustrates that the 354	
  

flash drought signal appeared in EDDI starting in May, 2011, and in SPI and SSI starting in 355	
  

August, 2011. 356	
  

< Figure 6 here > 357	
  

To spatially assess EDDI during the extended 2012 drought a comparison was made between 358	
  

the USDM, SPI, SSI, and ESI. Recall from Section 2.5 that the USDM is at a blended time-scale, 359	
  

against which a fixed time-scale EDDI is being compared: thus, the EDDI and the USDM 360	
  

distributions should not be expected to look similar. The objective of the EDDI and USDM 361	
  

comparisons is to show that EDDI can presage rapid onset droughts before the impacts show up 362	
  

in the USDM, thus highlighting the substantial added value gained by using EDDI in conjunction 363	
  

with other drought-monitoring metrics for decision-making applications. 364	
  

Figure 7 shows the evolution of the 1-month EDDI, ESI, SSI, and SPI, and USDM through 365	
  

time and space over the spring and summer of 2012. The USDM generally indicated no drought 366	
  

or D1-D2 over much of the central US of 1 May. This is likely a result of the near-normal to 367	
  

slightly above normal Prcp during April, as illustrated in the April SPI spatial distribution. In 368	
  

contrast, EDDI indicates at least moderate drought conditions over most of the same region, and 369	
  

looks similar to the USDM spatial distribution two months later (i.e., of 3 July, 2012). EDDI 370	
  

responded to anomalously high Tair, U2, and Rd across the region during the second half of April. 371	
  

ESI showed widespread neutral conditions for April with a rapid intensification in May. SSI and 372	
  

SPI show a slower progression and more local intensification (non-uniform spatial distribution) 373	
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when compared to EDDI and ESI. The 2012 drought evolution illustrated by the USDM over the 374	
  

central US expands in both spatial extent and severity throughout the summer, however the 375	
  

progression from D0 to D3 and D4 takes approximately three months. Figure 7 illustrates that 1-376	
  

month EDDI presaged the onset of USDM extreme to exceptional drought by as much as two 377	
  

months. ESI also led the onset of extreme to exceptional drought, but was limited in extent when 378	
  

respectively compared to April through July EDDI, and July USDM drought spatial 379	
  

distributions. 380	
  

< Figure 7 here > 381	
  

3.4 Extended drought in arid to semi-arid regions 382	
  

In this section we examine whether EDDI can be used to characterize historical extended 383	
  

droughts over the western US. Droughts in arid to semi-arid regions of the US are generally 384	
  

slower to develop than in the central US, primarily due to the manner in which water resources 385	
  

are both naturally and anthropogenically stored. Natural water storage occurs as winter 386	
  

snowpack at high elevations that typically reach maximum depth in March or April. During 387	
  

spring and summer snowmelt, runoff is stored in reservoirs. Hydrologic and agricultural drought 388	
  

severity in the west are strongly linked to reservoir storage and streamflow (McEvoy et al. 2012, 389	
  

Abatzoglou et al. 2014). 390	
  

Two extended drought case studies using the USDM, EDDI, SPI, and SSI are shown in 391	
  

Figure 8. The first case focuses on the drought of the 2007 water year (October 2006 through 392	
  

September 2007) (Figure 8, left column). The USDM from 02 October, 2007, indicates 78% 393	
  

(percent area) of the western US in at least a D0 drought class. Figure 8c illustrates the 12-month 394	
  

EDDI ending in September, 2007, and has the strongest spatial coherence and severity when 395	
  

compared to the USDM, while SSI and SPI (Figure 8e and 8g, respectively) underrepresent the 396	
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spatial extent shown by USDM and EDDI, particularly over NV, ID, and western MT. The 397	
  

second case focuses on the extreme southwestern drought of 2002 (Figure 8, right column), with 398	
  

the USDM mapped at 25 June, 2002, and the 6-month EDDI, SPI, and SPI mapped for January 399	
  

through June, 2002. All metrics show a similar spatial structure of drought extent, although 400	
  

EDDI and SPI indicate little to no drought in MT. Temperatures were lower than normal over 401	
  

much of MT, WY, and the northern portion of UT and CO, and slightly above normal for the 402	
  

Four Corners region (not shown). This indicates that Tair was likely driving EDDI negative in 403	
  

MT, however Tair, q and U2 must have all played a role in driving EDDI in the positive direction 404	
  

over UT and CO. 405	
  

< Figure 8 here > 406	
  

The potential usefulness of EDDI to aid in the interpretation of hydroclimatic states at 407	
  

multiple time scales and over long time periods was assessed for an area of interest. Figure 9 408	
  

illustrates time series of EDDI averaged over the northern Sierra Nevada for 1979-2013. The 409	
  

northern Sierra Nevada provides much of the water resources to western NV and CA, therefore 410	
  

the use of multiple complementary drought metrics for evaluating short and extended drought in 411	
  

this region is invaluable. EDDI at the 2-wk and 1-month time scales (Figure 9a and 9b, 412	
  

respectively) closely correspond to documented heat waves and extreme fire weather in the 413	
  

region (Burt 2007; Trouet et al. 2009), however the high frequency of the time series make it 414	
  

difficult to characterize hydrologic drought. At longer time scales EDDI (Figure 9c, 9d, and 9e, 415	
  

respectively) clearly identify all of the major documented hydrologic droughts over the period 416	
  

from 1979 to 2013 (Seager 2007; Weiss et al. 2009; McEvoy et al. 2012). The longest duration 417	
  

drought to occur during the period of record analyzed was during the early 2000s, when the 12-418	
  

month EDDI remained positive for five continuous years (late 1999 to 2005). Fast recovery of 419	
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hydrologic droughts are also well captured by EDDI at nearly all time scales when compared to 420	
  

known “drought-buster” precipitation events (Ralph and Dettinger 2010; Dettinger 2013), and 421	
  

wet periods associated with El Niño (1982-83 and 1997-98), and La Niña (2010-11). 422	
  

< Figure 9 here > 423	
  

5. Summary and conclusions 424	
  

This work highlights an application and assessment of EDDI at multiple time scales and for 425	
  

several hydroclimates as a companion study to Hobbins et al. (this issue). The methods and 426	
  

results of Hobbins et al. (this issue) are reinforced and a robust CONUS-wide evaluation is 427	
  

performed, by examining EDDI and individual evaporative demand components as they relate to 428	
  

the dynamic evolution of flash drought over the central US, characterization of hydrologic 429	
  

drought over the western US, and comparison to commonly used drought metrics (USDM, SPI, 430	
  

SSI, and ESI). Results highlight the advantages and limitations of EDDI as a monitor of drought 431	
  

at multiple time scales, and provide leading indications of flash and extended hydrologic 432	
  

drought. Correlations of EDDI to NLDAS-2 forced drought metrics of SSI and SPI indicate that 433	
  

over much of the CONUS, EDDI spatial distributions are generally similar to SPI and SSI. Over 434	
  

parts of the western US where weak correlations were found, EDDI often contained drought 435	
  

information not found in SPI or SSI. For example, Prcp is bounded by zero at short time scales (1 436	
  

to 2 months) over many western states, which can lead to a skewed SPI, whereas EDDI will 437	
  

maintain a consistent distribution during months with no Prcp. At short time scales, spatial 438	
  

distributions and time series results illustrate that EDDI can be useful for flash drought 439	
  

identification, and can serve as a leading indicator by as much as two months in advance of the 440	
  

USDM, SPI, and SSI (i.e. Figures 4, 6, 7; and Figures shown in Hobbins et al. - this issue). 441	
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Comparisons of EDDI to remotely sensed ESI products also show strong correlations, with 442	
  

the exceptions of the northeast US during spring, and over parts of the western US during 443	
  

summer. Weak correlations with ESI over the northeastern US are largely due to energy-limited 444	
  

land-surface energy-balance conditions over the region, where ET and ET0 are often positively 445	
  

correlated. Weak correlations with ESI over the western US during summer months are likely 446	
  

due to the low and effectively zero-bounded actual ET rates that occur in arid environments. Low 447	
  

soil moisture and low ET rates make it difficult to accurately estimate ET with thermal and 448	
  

optical remote sensing. These uncertainties combined with the high variability of estimated ET 449	
  

relative to average conditions often led to spurious ESI values and low correlations with EDDI. 450	
  

Comparisons of EDDI with ESI generally demonstrate that EDDI can be effectively used in 451	
  

conjunction with ESI and other remote sensing products to provide year-round data, with no 452	
  

limitations during cloudy days or over snow covered areas. 453	
  

For drought monitoring in arid and semi-arid regions of western US, EDDI aggregation to 454	
  

longer time scales (3 to 12 months) is best suited to capture the complementary relationship 455	
  

found between ET and ET0 (Bouchet 1963; Hobbins et al. 2004), and therefore identify extended 456	
  

hydrologic droughts typical of this region. Results illustrate that in most cases, when Prcp 457	
  

deficits at the 3- to 12-month time scales were fairly large, EDDI was strongly positive. 458	
  

However, the complementary relationship was found to not hold true in regions and time periods 459	
  

where weak land surface-atmospheric coupling and energy limited conditions exist (Figures 3 460	
  

and 5). 461	
  

Despite some noted limitations, EDDI is shown to provide useful information on the less-462	
  

understood and documented dynamical processes associated with drought evolution and 463	
  

persistence. Results highlighted in this work illustrate the benefits of assimilating physically 464	
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based E0 estimates and EDDI into operational monitoring products such as the USDM. The 465	
  

additional information and early warning provided by EDDI could greatly contribute to a 466	
  

stronger understanding of drought evolution and dynamics, land surface-atmosphere interactions, 467	
  

and perhaps more importantly, reduce and/or mitigate future adverse societal effects that have 468	
  

been associated with past droughts. EDDI could also prove very useful and effective for easy-to-469	
  

implement operational early warning for agricultural and fire-weather monitoring (Ham et al. 470	
  

2014) and seasonal forecasting of drought. 471	
  

Acknowledgments 472	
  

This research was supported by the Desert Research Institute (DRI) Maki Endowment for 473	
  

enhancing water resource monitoring in Southern, Nevada, U.S. Bureau of Reclamation Climate 474	
  

Analysis Tools WaterSMART program, the National Integrated Drought Information System 475	
  

(NIDIS) program, and U.S. Geological Survey and DRI Great Basin Cooperative Ecosystem 476	
  

Study Unit collaborative project on drought monitoring and fallow field tracking through cloud 477	
  

computing of Landsat, MODIS, and gridded climate data archives. 478	
  

References 479	
  

Abatzoglou, J.T., 2011: Development of gridded surface meteorological data for ecological 480	
  

applications and modelling. Int. J. Climatol. 33, 121–131, doi:10.1002/joc.3413. 481	
  

Abatzoglou, J.T., R. Barbero, J. Wolf, and Z. Holden, 2014: Tracking interannual streamflow 482	
  

variability with drought indices in the U.S. Pacific Northwest. J. Hydrometeor. 15, 1900–483	
  

1912, doi:10.1175/JHM-D-13-0167.1. 484	
  

Abramowitz, M., and I.A. Stegun, 1965: Handbook of mathematical functions, with formulas, 485	
  

graphs, and mathematical tables. Dover Publications, 1046 pp. 486	
  



 23 

Anderson, M.C., J.M. Norman, G.R. Diak, W.P. Kustas, and J.R. Mecikalski, 1997: A two-487	
  

source time-integrated model for estimating surface fluxes using thermal infrared remote 488	
  

sensing. Remote Sens. Environ., 60, 195–216. 489	
  

Anderson, M.C., J. M. Norman, J.R. Mecikalski, J.A. Otkin, and W.P. Kustas, 2007: A 490	
  

climatological study of evapotranspiration and moisture stress across the continental United 491	
  

States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, 492	
  

D10117, doi:10.1029/2006JD007506. 493	
  

Anderson, M.C., J.M. Norman, J.R. Mecikalski, J.A. Otkin, and W.P. Kustas, 2007: A 494	
  

climatological study of evapotranspiration and moisture stress across the continental United 495	
  

States based on thermal remote sensing: 2. Surface moisture climatology, J. Geophys. 496	
  

Res., 112, D11112, doi:10.1029/2006JD007507. 497	
  

Anderson, M.C., C. Hain, B. Wardlow, A. Pimstein, J.R. Mecikalski, and W.P. Kustas, 2011: 498	
  

Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the 499	
  

continental United States. J. Climate, 24(8), 2025–2044, doi:10.1175/2010JCLI3812.1. 500	
  

Anderson, M.C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 501	
  

2013: An intercomparison of drought indicators based on thermal remote sensing and 502	
  

NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 503	
  

1035–1056, doi:10.1175/JHM-D-12-0140.1. 504	
  

ASCE-EWRI, 2005: The ASCE Standardized Reference Evapotranspiration Equation. Report 0-505	
  

7844-0805-X, 59 pp. [Available online at 506	
  

http://www.kimberly.uidaho.edu/water/asceewri/ascestzdetmain2005.pdf.] 507	
  



 24 

Bouchet, R.J., 1963: Évapotranspiration réelle et potentielle, signification climatique. Proc. 508	
  

International Association Scientific Hydrology Symp., Publ. No. 62, Berkeley, CA, 509	
  

International Association Scientific Hydrology, 134–142. 510	
  

Burt, C.C., 2007: Extreme weather: a guide and record book. W.W. Norton and Co., 320 pp. 511	
  

Cattiaux, J., and P. Yiou, 2013: U.S. heat waves of spring and summer 2012 from the flow-512	
  

analogue perspective [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. 513	
  

Bull. Amer. Meteor. Soc., 94(9), S10–S13. 514	
  

Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index 515	
  

during 1900-2008, J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541. 516	
  

Daly, C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping 517	
  

climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33(2), 140–158. 518	
  

Dettinger, M.D., 2013. Atmospheric rivers as drought busters on the U.S. West Coast. J. 519	
  

Hydrometeor., 14(6), 1721–1732, doi: 10.1175/JHM-D-13-02.1. 520	
  

Farahmand, A., and A. AghaKouchak, 2015: A generalized framework for deriving 521	
  

nonparametric standardized indicators. Adv. Water Resour., 76, 140–145, 522	
  

doi:10.1016/j.advwatres.2014.11.012 523	
  

Guttman, N.B., 1999: Accepting the standardized precipitation index: a calculation algorithm. J. 524	
  

Amer. Water Resour. Assoc. 35(2), 311–322. 525	
  

Ham, C., M.T. Hobbins, K.L. Abt, and J.P. Prestemon, 2014: Using the Evaporative Demand 526	
  

Drought Index and the Palmer Drought Severity Index to forecast the number of large 527	
  

wildland fires on federal lands, Large Wildland Fires Conference, Missoula, MT, 528	
  

Association for Fire Ecology and the International Association of Wildland Fire. [Available 529	
  



 25 

online at http://largefireconference.org/wp-content/uploads/2013/06/Oral-Presentation-530	
  

Abstracts-V4.pdf.] 531	
  

Han, S., F. Tian, and H. Hu, 2014: Positive or negative correlation between actual and potential 532	
  

evaporation? Evaluating using a nonlinear complementary relationship model. Water 533	
  

Resources Research, 50(2), 1322–1336. 534	
  

Hao, Z., and A. AghaKouchak, 2014: A nonparametric multivariate multi-index drought 535	
  

monitoring framework, J. Hydrometeor., 15, 89–101, doi:10.1175/JHM-D-12-0160.1. 536	
  

Hargreaves, G.H., and Z.A. Samani, 1985: Reference crop evapotranspiration from temperature, 537	
  

Appl. Eng. Agric., 1, 96–99. 538	
  

Heddinghaus, T.R., and P. Sabol, 1991: A review of the Palmer Drought Severity Index and 539	
  

where do we go from here? Preprints, Seventh Conf. on Applied Climatology, Boston, MA, 540	
  

Amer. Meteor. Soc., 242–246. [Available online at http://www.ncdc.noaa.gov/temp-and-541	
  

precip/drought/docs/heddinghaus-sabol-pmdi-article.pdf.] 542	
  

Hobbins, M.T., J.A. Ramírez, and T.C. Brown, 2004: Trends in pan evaporation and actual 543	
  

evaporation across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. 544	
  

Lett., 31(13), L13503, doi: 10.1029/2004GL0198426. 545	
  

Hobbins, M.T., A. Dai, M.L. Roderick, and G.D. Farquhar, 2008: Revisiting the 546	
  

parameterization of potential evaporation as a driver of long-term water balance trends. 547	
  

Geophys. Res. Lett., 35, L12403, doi: 10.1029/2008GL033840. 548	
  

Hobbins, M.T., A.W. Wood, D. Streubel, and K. Werner, 2012: What drives the variability of 549	
  

evaporative demand across the conterminous United States? J. Hydrometeor., 13, 1195–550	
  

1214, doi: 10.1175/JHM-D-11-0101.1. 551	
  



 26 

Hobbins, M.T., A. Wood, D.J. McEvoy, J.L. Huntington, C. Morton, and J. Verdin, 2015: The 552	
  

Evaporative Demand Drought Index: Part I - linking drought evolution to variations in 553	
  

evaporative demand. J. Hydrometeor. (this issue). 554	
  

Hobbins, M.T., 2015: The variability of ASCE Standardized Reference Evapotranspiration: a 555	
  

rigorous, CONUS-wide decomposition and attribution. Trans. ASABE (accepted). 556	
  

Karl T.R., and Coauthors, 2012: U.S. temperature and drought: recent anomalies and trends. Eos 557	
  

Trans. AGU, 93(47), 473–474. 558	
  

Koster, R.D., and Coauthors, 2004: Regions of strong coupling between soil moisture and 559	
  

precipitation. Science, 305(5687), 1138–1140, doi: 10.1126/science.1100217. 560	
  

Koster, R.D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling 561	
  

Experiment. Part I: Overview. J. Hydrometeor., 7, 590–610, doi:10.1175/JHM510.1. 562	
  

Koster, R.D., S.D. Schubert, and M.J. Suarez, 2009: Analyzing the concurrence of 563	
  

meteorological droughts and warm periods, with implications for the determination of 564	
  

evaporative regime. J. Climate, 22, 3331–3341, doi: 10.1175/2008JCLI2718.1. 565	
  

Liang, X., D.P. Lettenmaier, E.F. Wood, and S.J. Burges, 1994: A simple hydrologically based 566	
  

model of land surface water and energy fluxes for general circulation models. J. Geophys. 567	
  

Res., 99(D7), 14,415–14,428. 568	
  

Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. 569	
  

Soc., 87(3), 343–360, 10.1175/BAMS-87-3-343 570	
  

McEvoy, D.J., J.L. Huntington, J.T. Abatzoglou, and L.M. Edwards, 2012: An evaluation of 571	
  

multiscalar drought indices in Nevada and eastern California. Earth Interact., 16, 1–18, 572	
  

doi:10.1175/2012EI000447.1. 573	
  



 27 

McKee, T.B., N.J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and 574	
  

duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, 575	
  

Amer. Meteor. Soc., 179–184. [Available online at 576	
  

http://ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pdf.] 577	
  

Milly, P.C.D., and K.A. Dunne, 2011: On the hydrologic adjustment of climate-model 578	
  

projections: the potential pitfall of potential evapotranspiration. Earth Interact., 15, 579	
  

doi:10.1175/2010EI363.1. 580	
  

Mitchell, K.E., and Coauthors, 2004: The multi-institution North American Land Data 581	
  

Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a 582	
  

continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, 583	
  

doi:10.1029/2003JD003823. 584	
  

Mo, K.C., and D.P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 585	
  

42, 2823–2829, doi:10.1002/2015GL064018. 586	
  

Monteith, J.L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., XIX, 205–234. 587	
  

Mu, Q., M. Zhao, J.S. Kimball, N.G. McDowell, and S.W. Running, 2013: A remotely sensed 588	
  

global terrestrial drought severity index. Bull. Amer. Meteor. Soc., 94(1), 83–98, 589	
  

doi:10.1175/BAMS-D-11-00213.1. 590	
  

Otkin, J.A., M.C. Anderson, C. Hain, I.E. Mladenova, J.B. Basara, M. Svoboda, 2013a: 591	
  

Examining rapid onset drought development using the thermal infrared–based Evaporative 592	
  

Stress Index. J. Hydrometeor., 14, 1057–1074. doi:10.1175/JHM-D-12-0144.1. 593	
  

Otkin, J.A., M.C. Anderson, C. Hain, and M. Svoboda, 2013b: Examining the relationship 594	
  

between drought development and rapid changes in the Evaporative Stress Index. J. 595	
  

Hydrometeor., 15, 938–956, doi:10.1175/JHM-D-13-0110.1. 596	
  



 28 

Palmer, W.C., 1965: Meteorological drought. Research Paper 45, 58 pp. [Available online at 597	
  

http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.] 598	
  

Penman, H.L., 1948: Natural evaporation from open water, bare soil and grass. Proc. R. Soc. 599	
  

London, Ser. A, 193(1032), 120–146, doi:10.1098/rspa.1948.0037. 600	
  

Priestley, C.H.B., and R.J. Taylor, 1972: On the assessment of surface heat flux and evaporation 601	
  

using large-scale parameters. Mon. Weather Rev., 100(2), 81–92. 602	
  

Quiring, S.M., 2009: Developing objective operational definitions for monitoring drought. J. 603	
  

Appl. Meteor. Climatol. 48, 1217–1229, doi:	
  10.1175/2009JAMC2088.1. 604	
  

Ralph, F.M., and M.D. Dettinger, 2012: Historical and national perspectives on extreme West 605	
  

Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. 606	
  

Meteor. Soc., 93, 783–790. doi:10.1175/BAMS-D-11-00188.1. 607	
  

Seager, R., 2007: The turn of the century North American drought: global context, dynamics, 608	
  

and past analogs. J. Climate, 20, 5527–5552, doi:10.1175/2007JCLI1529.1. 609	
  

Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. 610	
  

Henderson, 2014: Causes and predictability of the 2011-14 California drought. Assessment 611	
  

Report, 40 pp.  [Available online at http://cpo.noaa.gov/MAPP/californiadroughtreport.] 612	
  

Sheffield, J., E.F. Wood, and M.L. Roderick, 2012: Little change in global drought over the past 613	
  

60 years. Nature, 491, 435–438, 15 November, doi:10.1038/nature11575. 614	
  

Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 1181–615	
  

1190. 616	
  

Thornthwaite, C.W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 617	
  

38, 55–94. 618	
  



 29 

Trouet, V., A.H. Taylor, A.M. Carleton, and C.N. Skinner, 2009: Interannual variations in fire 619	
  

weather, fire extent, and synoptic-scale circulation patterns in northern California and 620	
  

Oregon. Theor. Appl. Climatol., 95(3-4), 349–360, doi:10.1007/s00704-008-0012-x. 621	
  

van der Schrier, G., P.D. Jones, and K.R. Briffa, 2011: The sensitivity of the PDSI to the 622	
  

Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. 623	
  

Geophys. Res., 116, doi:10.1029/2010JD015001. 624	
  

Vicente-Serrano, S.M., J.I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina, 625	
  

and E. Morán-Tejeda, 2012: Accurate computation of a streamflow drought index. J. Hydrol. 626	
  

Eng., 17(2), 318–332, doi:10.1061/(ASCE)HE.1943-5584.0000433. 627	
  

Weiss, J.L., C.L. Castro, and J.T. Overpeck, 2009: Distinguishing pronounced droughts in the 628	
  

southwestern United States: Seasonality and effects of warmer temperatures. J. Climate, 22, 629	
  

5918–5932, doi:	
  10.1175/2009JCLI2905.1. 630	
  

Wilks, D.S., 2011: Empirical distributions and exploratory data analysis. Statistical methods in 631	
  

the atmospheric sciences. Academic Press, 23–70. 632	
  

Xia, Y. and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation 633	
  

for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. 634	
  

Intercomparison and application of model products. J. Geophys. Res., 117(D3), 635	
  

doi:10.1029/2011JD016048. 636	
  

Xia, Y. and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation 637	
  

for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. 638	
  

Validation of model-simulated streamflow, J. Geophys. Res., 117(D3), 639	
  

doi:10.1029/2011JD016051. 640	
  



 30 

Yao, Y., S. Liang, Q. Qin, and K. Wang, 2010: Monitoring drought over the conterminous 641	
  

United States using MODIS and NCEP Reanalysis-2 data. J. Appl. Meteor. Climatol., 49, 642	
  

1665–1680. doi:10.1175/2010JAMC2328.1.  643	
  



 31 

Table 1: Drought classes for comparing USDM to SPI, SSI, ESI, and EDDI. Positive EDDI 644	
  
values indicate drought and the upper percentiles (70-100) must be used to derive USDM 645	
  
classes. 646	
  
 647	
  

USDM 
drought 
category 

Description SPI, SSI, and ESI 
percentiles EDDI percentiles 

D0 Abnormally Dry 21-30 70-79 
D1 Moderate Drought 11-20 80-89 
D2 Severe Drought 6-10 90-94 
D3 Extreme Drought 3-5 95-97 
D4 Exceptional Drought 0-2 98-100 

  648	
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List of figures: 649	
  

Figure 1: Correlation coefficient between EDDI and SPI at (a) 1-month, (c) 6-month, (e) 12-650	
  

month, and SSI (b) 1-month, (d) 6-month, and (f) 12-month time scales. 651	
  

Figure 2: Shading indicates METDATA terrain height (m) and red boxes indicate area-652	
  

averaging domains for Figures 3 and 4. IA, TX, and PA boxes are 50 x 100 4-km 653	
  

METDATA pixels (200 km x 400 km), and CA box is 25 x 25 pixels (100 km x 100 km). 654	
  

Figure 3: Monthly correlations between EDDI and SPI (top row) and SSI (bottom row) at all 655	
  

time scales for (a, e) TX, (b, f) CA, (c, g) IA, and (d, h) PA. Y-axis indicates ending month 656	
  

of each time scale, and x-axis shows time scale (months). Shading indicates correlation 657	
  

coefficients. 658	
  

Figure 4: Lagged correlation between 3-month SSI ending in August and EDDI for (a) CA, (b) 659	
  

TX, (c) IA, and (d) PA. Y-axis indicates EDDI ending months and x-axis indicate EDDI time 660	
  

scale. Green dots are placed in the ending month containing the strongest correlation for each 661	
  

time scale, and blue dots are used as a reference to show SSI time scale and ending month. 662	
  

Figure 5: Seasonal correlation coefficient (left column spring and right column summer) 663	
  

between ESI and EDDI at (a, b) 4-week, (c, d) 8-week, and (e, f) 12-week time scales. Areas 664	
  

shaded in white indicate an insufficient amount of ESI data. 665	
  

Figure 6: EDDI under sustained and flash drought conditions. (a) Monthly time series of 1-666	
  

month EDDI, SSI, and SPI area averaged over the IA domain. (b) Monthly time series of 1-667	
  

month EDDI and EDDI constrained by climatology Tair (EDDI-T), q (EDDI-q), Rd (EDDI-668	
  

Rd), and U2 (EDDI- U2). Black box highlights time period shown in (c). (c) Daily time series 669	
  

of 1-month EDDI, EDDI-T, EDDI-q, EDDI-Rd and EDDI-U2 for May and June 2011 shown 670	
  

to highlight details of flash drought initiation. Note that the vertical axis of EDDI is reversed 671	
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to clearly visualize drought onset and duration when compared to SPI and SSI. Light green 672	
  

reference line indicates start of moderate drought classification (-0.78). 673	
  

Figure 7: Evolution of the 1-month EDDI (top row), USDM (second row), 1-month ESI (third 674	
  

row), 1-month SSI (fourth row), and 1-month SPI (fifth row) through spring and summer of 675	
  

2012. USDM data are from 1 May, 2012 (April column), 5 June, 2012 (May column), 3 July, 676	
  

2012 (June column), and 31 July, 2012 (July column). EDDI, ESI, SSI, and SPI are at 1-677	
  

month time scales at the end of each month: April, May, June, and July. All drought metrics 678	
  

have been converted to USDM categories according to Table 1.	
  679	
  

Figure 8: USDM from 02 October, 2007 (a) and 25 June, 2002 (b), 12-month (October-680	
  

September) EDDI (c), SSI (e), and SPI (g) ending September, 2007, and 6-month (January-681	
  

June) EDDI (d), SSI (f), and SPI (h) ending June, 2002. 682	
  

Figure 9: Area-averaged time series of EDDI over the northern Sierra Nevada from 1979 to 683	
  

2013 aggregated at 2-week (a), 1-month (b), 3-month (c), 6-month (d), and 12-month time 684	
  

scales.  685	
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 686	
  
Figure 1: Correlation coefficient between EDDI and SPI at (a) 1-month, (c) 6-month, (e) 12-687	
  
month, and SSI (b) 1-month, (d) 6-month, and (f) 12-month time scales. 688	
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 689	
  

Figure 2: Shading indicates METDATA terrain height (m) and red boxes indicate area-690	
  
averaging domains for Figures 3 and 4. IA, TX, and PA boxes are 50 x 100 4-km METDATA 691	
  
pixels (200 km x 400 km), and CA box is 25 x 25 pixels (100 km x 100 km). 692	
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 693	
  

Figure 3: Monthly correlations between EDDI and SPI (top row) and SSI (bottom row) at all 694	
  
time scales for (a, e) TX, (b, f) CA, (c, g) IA, and (d, h) PA. Y-axis indicates ending month of 695	
  
each time scale, and x-axis shows time scale (months). Shading indicates correlation coefficients. 696	
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 697	
  

Figure 4: Lagged correlation between 3-month SSI ending in August and EDDI for (a) CA, (b) 698	
  
TX, (c) IA, and (d) PA. Y-axis indicates EDDI ending months and x-axis indicate EDDI time 699	
  
scale. Green dots are placed in the ending month containing the strongest correlation for each 700	
  
time scale, and blue dots are used as a reference to show SSI time scale and ending month. 701	
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 702	
  

Figure 5: Seasonal correlation coefficient (left column spring and right column summer) 703	
  
between ESI and EDDI at (a, b) 4-week, (c, d) 8-week, and (e, f) 12-week time scales. Areas 704	
  
shaded in white indicate an insufficient amount of ESI data. 705	
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 706	
  

Figure 6: EDDI under sustained and flash drought conditions. (a) Monthly time series of 1-707	
  
month EDDI, SSI, and SPI area averaged over the IA domain. (b) Monthly time series of 1-708	
  
month EDDI and EDDI constrained by climatology Tair (EDDI-T), q (EDDI-q), Rd (EDDI-Rd), 709	
  
and U2 (EDDI- U2). Black box highlights time period shown in (c). (c) Daily time series of 1-710	
  
month EDDI, EDDI-T, EDDI-q, EDDI-Rd and EDDI-U2 for May and June 2011 shown to 711	
  
highlight details of flash drought initiation. Note that the vertical axis of EDDI is reversed to 712	
  
clearly visualize drought onset and duration when compared to SPI and SSI. Light green 713	
  
reference line indicates start of moderate drought classification (-0.78). 714	
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  715	
  

Figure 7: Evolution of the 1-month EDDI (top row), USDM (second row), 1-month ESI (third 716	
  
row), 1-month SSI (fourth row), and 1-month SPI (fifth row) through spring and summer of 717	
  
2012. USDM data are from 1 May, 2012 (April column), 5 June, 2012 (May column), 3 July, 718	
  
2012 (June column), and 31 July, 2012 (July column). EDDI, ESI, SSI, and SPI are at 1-month 719	
  
time scales at the end of each month: April, May, June, and July. All drought metrics have been 720	
  
converted to USDM categories according to Table 1.	
  721	
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 722	
  

Figure 8: USDM from 02 October, 2007 (a) and 25 June, 2002 (b), 12-month (October-723	
  
September) EDDI (c), SSI (e), and SPI (g) ending September, 2007, and 6-month (January-June) 724	
  
EDDI (d), SSI (f), and SPI (h) ending June, 2002. 725	
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 726	
  

Figure 9: Area-averaged time series of EDDI over the northern Sierra Nevada from 1979 to 727	
  
2013 aggregated at 2-week (a), 1-month (b), 3-month (c), 6-month (d), and 12-month time 728	
  
scales. 729	
  


